Monday, December 7, 2015

p. 644: 26, 27, 28, 30, 41, 42, 44

Problem 26

Problem. Find the 4th Taylor polynomial centered at c=2 of the function $f(x)=\frac{1}{x^2}$. Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(2)$	$\frac{f^{(n)}(2)}{n!}$
0	x^{-2}	$\frac{1}{2^2}$	$\frac{1}{2^2}$
1	$-2!x^{-3}$	$-\frac{2!}{2^3}$	$-\frac{2}{2^3}$
2	$3!x^{-4}$	$\frac{3!}{2^4}$	$\frac{3}{2^4}$
3	$-4!x^{-5}$	$-\frac{4!}{2^5}$	$-\frac{4}{2^{5}}$
4	$5!x^{-6}$	$\frac{5!}{2^6}$	$\frac{5}{2^6}$

The polynomial is

$$P_4(x) = \frac{1}{2^2} - \frac{2(x-2)}{2^3} + \frac{3(x-2)^2}{2^3} - \frac{4(x-2)^3}{2^4} + \frac{5(x-2)^4}{2^6}$$
$$= \frac{1}{4} - \frac{1}{4}(x-2) + \frac{3}{8}(x-2)^2 - \frac{1}{4}(x-2)^3 + \frac{5}{32}(x-2)^4.$$

Problem 27

Problem. Find the 3rd Taylor polynomial centered at c=4 of the function $f(x)=\sqrt{x}$. Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(4)$	$\frac{f^{(n)}(4)}{n!}$
0	$x^{1/2}$	2	2
1	$\frac{1}{2}x^{-1/2}$	$\frac{1}{2^2}$	$\frac{1}{2^2}$
2	$\frac{1}{2^2}!x^{-3/2}$	$\frac{1}{2^5}$	$\frac{1}{2^5 \cdot 2!}$
3	$\frac{1\cdot 3}{2^3}x^{-5/2}$	$\frac{1\cdot 3}{2^8}$	$\frac{1\cdot 3}{2^8\cdot 3!}$

The polynomial is

$$P_4(x) = 2 + \frac{x-4}{2^2} + \frac{(x-4)^2}{2^5 \cdot 2!} + \frac{(1 \cdot 3)(x-4)^3}{2^8 \cdot 3!}$$

= $2 + \frac{1}{4}(x-4) + \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3$.

Problem 28

Problem. Find the 3rd Taylor polynomial centered at c = 8 of the function $f(x) = \sqrt[3]{x}$. Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(8)$	$\frac{f^{(n)}(8)}{n!}$
0	$x^{1/3}$	2	2
1	$\frac{1}{3}x^{-2/3}$	$\frac{1}{3 \cdot 2^2}$	$\frac{1}{3 \cdot 2^2}$
2	$-\frac{2}{3^2}!x^{-5/3}$	$\frac{2}{3^2 \cdot 2^5}$	$\frac{2}{3^2 \cdot 2^5 \cdot 2!}$
3	$\frac{2.5}{3^3}x^{-8/3}$	$\frac{2\cdot 5}{3^3\cdot 2^8}$	$\frac{2.5}{3^3.2^8.3!}$

The polynomial is

$$P_4(x) = 2 + \frac{x-8}{2^2} - \frac{2(x-8)^2}{3^2 \cdot 2^5 \cdot 2!} + \frac{(2 \cdot 5)(x-8)^3}{3^3 \cdot 2^8 \cdot 3!}$$

= $2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2 + \frac{5}{10368}(x-8)^3$.

Problem 30

Problem. Find the 2nd Taylor polynomial centered at $c = \pi$ of the function $f(x) = x^2 \cos x$. Solution. First, we need the first two derivatives of $x^2 \cos x$.

$$f(x) = x^{2} \cos x,$$

$$f'(x) = (2x)(\cos x) + (x^{2})(-\sin x)$$

$$= 2x \cos x - x^{2} \sin x,$$

$$f''(x) = ((2)(\cos(x)) + (2x)(-\sin x)) - ((2x)(\sin x) + (x^{2})(\cos x))$$

$$= (2 - x^{2}) \cos x - 4x \sin x.$$

The table of coefficients (using the facts that $\cos \pi = -1$ and $\sin \pi = 0$):

n	$f^{(n)}(x)$	$f^{(n)}(\pi)$	$\frac{f^{(n)}(\pi)}{n!}$
0	$x^2 \cos x$	$-\pi^2$	$-\pi^2$
1	$2x\cos x - x^2\sin x$	-2π	-2π
2	$(2-x^2)\cos x - 4x\sin x$	π^2-2	$\frac{\pi^2 - 2}{2!}$

The polynomial is

$$P_4(x) = -\pi^2 - 2\pi(x - \pi) + \frac{(\pi^2 - 2)(x - \pi)^2}{2!}$$
$$= -\pi^2 - 2\pi(x - \pi) + \frac{(\pi^2 - 2)}{2}(x - \pi)^2.$$

Problem 41

Problem. Approximate the function $f(x) = e^{4x}$ at $x = \frac{1}{4}$ using the polynomial found in Exercise 13.

Solution. The polynomial found in Exercise 13 is

$$P_4(x) = 1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4.$$

Therefore,

$$P_4(\frac{1}{4}) = 1 + 4\left(\frac{1}{4}\right) + 8\left(\frac{1}{4}\right)^2 + \frac{32}{3}\left(\frac{1}{4}\right)^3 + \frac{32}{3}\left(\frac{1}{4}\right)^4$$
$$= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$$
$$= 2.708333 \cdots$$

Problem 42

Problem. Approximate the function $f(x) = x^2 e^{-x}$ at $x = \frac{1}{5}$ using the polynomial found in Exercise 20.

Solution. The polynomial found in Exercise 20 is

$$P_4(x) = x^2 - x^3 + \frac{1}{2}x^4.$$

Therefore,

$$P_4(\frac{1}{5}) = \left(\frac{1}{5}\right)^2 - \left(\frac{1}{5}\right)^3 + \frac{1}{2}\left(\frac{1}{5}\right)^4$$
$$= \frac{1}{25} - \frac{1}{125} + \frac{1}{1250}$$
$$= 0.0328.$$

Problem 44

Problem. Approximate the function $f(x) = x^2 \cos x$ at $x = \frac{7\pi}{8}$ using the polynomial found in Exercise 30.

Solution. The polynomial found in Exercise 30 is

$$P_2(x) = -\pi^2 - 2\pi(x - \pi) + \frac{(\pi^2 - 2)}{2}(x - \pi)^2.$$

Therefore,

$$P_{2}(\frac{7\pi}{8}) = -\pi^{2} - 2\pi \left(\frac{7\pi}{8} - \pi\right) + \frac{(\pi^{2} - 2)}{2} \left(\frac{7\pi}{8} - \pi\right)^{2}$$

$$= -\pi^{2} - 2\pi \left(-\frac{\pi}{8}\right) + \frac{(\pi^{2} - 2)}{2} \left(-\frac{\pi}{8}\right)^{2}$$

$$= -\pi^{2} + \frac{\pi^{2}}{4} + \frac{(\pi^{2} - 2)\pi^{2}}{128}$$

$$= -\frac{49\pi^{2}}{64} + \frac{\pi^{4}}{128}$$

$$= -6.7954...$$